
Semantic-SuPer: Employing Semantic Perception for Endoscopic Tissue
Identification, Reconstruction, and Tracking

Shan Lin1, Jingpei Lu1, Florian Richter1, Michael C. Yip1, Senior Member, IEEE

Abstract— Accurate and robust tracking and reconstruction
of the surgical scene is a critical enabling technology toward
autonomous robotic surgery. Existing algorithms for 3D per-
ception in surgery mainly rely on geometric information, while
we propose to also leverage semantic information inferred from
the endoscopic video using image segmentation algorithms. In
this paper, we present a novel, comprehensive surgical per-
ception framework, Semantic-SuPer, that integrates geometric
and semantic information to facilitate data association, 3D
reconstruction, and tracking of endoscopic scenes, benefiting
downstream tasks like surgical navigation. The proposed frame-
work is demonstrated on challenging endoscopic data with
deforming tissue, showing its advantages over our baseline and
several other state-of-the-art approaches. Our code and dataset
are available at https://github.com/ucsdarclab/Python-SuPer.

I. INTRODUCTION

As surgical robots advance, there is a growing interest in
equipping them with intelligence to better understand the sur-
gical environment. 3D scene understanding of both geometric
and semantic features of anatomy enables more effective nav-
igation in patients and paves the way for automated surgical
tasks. Current surgical navigation relies on segmented, fixed
preoperative images like CT/MRI scans to serve as a map to
provide 3D geometry and semantics information [1], [2], [3],
[4], [5], but it becomes less reliable in cases of significant
deformation, limiting its use in deformable surgical scenes.

In contrast, video semantic segmentation can extract pre-
cise anatomical information in real-time to update the naviga-
tion map. While integrating semantics and 3D geometry has
shown benefits in indoor and autonomous driving scenarios
[6], [7], [8], [9], surgical scenes pose unique challenges with
deformable, textureless tissues. These features complicate
data association, despite attempts to address it with advanced
approaches like photometric loss [10]. Our approach takes a
different angle by using semantics to guide data association,
introducing a “morphing loss” to ensure border consistency
between semantic segmentation and the 3D model.

In summary, we introduce a novel surgical perception
framework Semantic-SuPer, which merges semantic insights
extracted from videos with 3D deformation tracking and re-
construction. This framework enhances the established SuPer
framework [11], [12] by integrating model-free deformable
tissue tracking with semantic information, increasing robust-
ness and improving accuracy for surgical perception.
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Fig. 1. A demonstration of Semantic-SuPer. (a) Input video frame. (b)
Depth and (c) semantic segmentation map estimated from the input. (d)
Scene rendered from the tracked surfels and surgical tool pose. (e) Scene
rendered from surfels visualized by colors corresponding to their semantics.

II. RELATED WORK

Surgical Scene Semantic Segmentation aims to segment
surgical images into tissue and tool regions. Deep models
have shown advanced performance for endoscopic image
segmentation [13], [14], [15], [16]. While many works focus
on developing segmentation algorithms, we emphasize the
integration of semantics into 3D surgical scene tracking.

Endoscopic Tissue Tracking is a specific area of non-
rigid tracking, where the low textured, deformable tissue is
a significant challenge. Existing methods often rely on as-
rigid-as-possible [17], [18], [19], [11] or spline-based [20],
[21], [22], [10] assumptions for tracking in complex surgical
scenes, which remains a challenge for even the latest tech-
niques [10], [23]. To address this, we introduce a compre-
hensive framework that combines surgical scene tracking and
reconstruction with semantic segmentation, demonstrating
how semantic information can aid data association.

Semantic SLAM leverages semantic information to en-
hance SLAM. It is widely used in autonomous driving
for various purposes, like feature selection, data association
improvement, dynamic region identification, and long-term
localization [24], [6], [7], [9]. Yet, such methods are limited
for endoscopic data. To the best of our knowledge, there are
only two works involving endoscopic data, using a binary
mask to segment surgical tools from tissue backgrounds [25],
[26]. In contrast, we consider segmentation information of
the whole surgical scene, including different types of tissues.

III. METHODS

The proposed approach builds upon the surgical percep-
tion framework SuPer for tissue manipulation [11], [12] by
including pixel-wise semantic labels as inputs and building
surface elements (surfels) [27], [28] with semantic informa-
tion, as shown in Figure 2. This semantic information is
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Fig. 2. Overview of the proposed framework. The depth and semantics are extracted from video. The transformations of ED nodes are optimized with
PyTorch’s automatic differentiation to match the observations. Surfel position and normal updates are then controlled by the ED nodes.

used to suppress erroneous data association between different
classes, and therefore improves the robustness of tissue
tracking. Furthermore, this allows us to build a 3D surfel map
that contains semantic information of different anatomies in
deformable surgical scenes, which could benefit endoscopic
surgical navigation and other related tasks in the future.

A. SuPer Framework
SuPer tracks the geometry of the entire surgical scene,

including both the tools controlled by the surgical robot
and the deforming tissues. Semantic-SuPer is primarily built
upon SuPer’s model-free tissue tracking method and employs
surface elements (surfels) [27] to represent the surgical scene.
Each surfel S is defined by a position pi ∈ R3, a normal
ni ∈ R3, a color ci ∈ R3, a radius ri ∈ R, a confidence
score ci ∈ R, and a time stamp ti ∈ N of its last update.
One can refer to [29], [28] for more details about SuPer.

The number of surfels is proportional to the number of
image pixels, so tracking each surfel individually requires a
large number of parameters. As inspired by [30], SuPer intro-
duces the Embedded Deformation (ED) graph with vertices
that are much sparser than the surfels to drive the motion of
the surfel set. The ED graph is given by GED = {V, E ,P},
where V is the set of vertices, E is the set of edges, and
P is the set of parameters. Each vertex (ED node) contains
(gj ,qj ,bj) ∈ P , where gj ∈ R3 is its position, qj ∈ R4

and bj ∈ R3 are the quaternion and translation parameters,
respectively. The position and normal of each surfel is then
updated as the average motions of their adjacent ED nodes

p̃i = Tg

∑
j∈Ni

ωj(pi)[T (qj ,bj)(pi − g⃗j) + g⃗j ] (1)

˜⃗ni = Tg

∑
j∈Ni

ωj(pi)[T (qj , 0)n⃗i] (2)

where Tg ∈ SE(3) is the global homogeneous transfor-
mation shared by all surfels, T (·) ∈ SE(3) is the local
homogeneous transform from a ED node, · and ·⃗ are the
homogeneous representations of a point and motion (i.e. p =
[p, 1]T and g⃗ = [g, 0]T ), Ni is the set of k-nearest neighbors
of pi in GED. ωj(pi) is a weight that indicates the influence
of gi to pi and is calculated as ωj(pi) = e−∥pi−gj∥ and
then normalized to sum to one within Ni.

B. Inputs to the Framework: Depth, Normals, and Semantics

Since the quality of the depth map significantly impacts
tracking performance, previously we conducted a compre-
hensive study showing that pre-trained deep learning depth
estimation models led to better tissue tracking than traditional
stereo matching algorithms [12]. Yet, without finetuning the
deep models on the surgical data, their predictions are still
noisy and can result in early tracking failures. Thus, we use
Monodepth2 and tune it in a self-supervised fashion with
stereo training data [31]. From the depth map, we estimate
the surface normal at each pixel as the average of the cross
products of all pairs of vectors that point to its 8 neighboring
pixels [32]. The surfel set is initialized from the first depth
and normal maps. ED nodes are initialized by sampling
uniformly in a rectangle mesh grid in the image, similar to
[33], and the corresponding node positions g are extracted
from the point cloud. The ED graph edges are then initialized
by connecting each node with its 8 neighbors. Meanwhile,
we use a popular segmentation model DeepLabv3+ [34] to
predict the segmentation map of each frame. For each surfel,
its semantic confidence scores si ∈ RC (C is the number of
classes) are initialized as the corresponding softmax outputs
of the network and its semantic label yi ∈ R is the class that
corresponds to the highest softmax score.

C. Semantic-aware Registration

At each new frame, transformations of ED nodes are
estimated according to new observations by solving

argmin
q,b,Tg

λsLsim + λmLmorph + λrLreg (3)

where Lsim measures the similarity between the transformed
model and input data based on data association, Lmorph

is the proposed semantic-aware morphing loss, Lreg is the
regularization term, and λm, λs, λr are hyper-parameters.
(3) is solved using gradient descent [35] with PyTorch’s
automatic differentiation.

1) Similarity Term Lsim: The first loss is the same point-
to-plane ICP loss [36] as in SuPer [11]:

Licp =
∑
i

ρi,o(n⃗
T
o (p̃i − po))

2 (4)



where po and n⃗o are the observed positions and normals,
bilinearly sampled [37] from the observations at the projected
pixel coordinates of p̃i, and ρi,o is the weight for each term.
The original SuPer, ρi,o = 1 [11]. For Semantic-SuPer, the
weight is computed based on the Jensen–Shannon divergence
[38] between the semantic softmax confidences of the surfel
and the observation, i.e., ρi,o = exp−JSD(si∥so).

The second term utilizes Pulsar [39], a real-time dif-
ferentiable renderer, to compute a loss directly between a
rendering of the tracked soft tissue and the raw image:

Lrender =
1

N

N∑
i=0

∥∥∥∥1− SSIM(Ii,R(S;q,b,Tg,K)i)

2

∥∥∥∥2
(5)

where SSIM(·) is the structural similarity index [40], N is
image pixel number, Ii is the ith pixel of image I , R(·) is
the Pulsar renderer, and K is the camera intrinsic parameters.

2) Semantic-aware Morphing Loss Lmorph: Lsim is
known to suffer from gradient locality, thereby Lmorph is
proposed to provide longer-range hints. It minimizes the
distance of surfels whose projections onto the image fall
outside of their own semantic region (see Figure 2) and the
semantic boundary:

Lmorph =
∑

π(pi)/∈Ri

min
o∈Bi

||π(pi)− o||2 (6)

where π(·) projects 3D points to the image plane, Ri is the
semantic region that the 2D projection of pi should lie in,
and Bi is the set of coordinates of boundary pixels of Ri.

3) Regularization term Lreg: The regularization term
consists of two terms. The first term, Lface, ensures that
all ED nodes move as rigidly as possible and is calculated
based on the changes in area of all the transformed triangle
surfaces in the ED graph [41]:

Lface =
∑

eij∈E,eik∈E,j ̸=k

Itri∥
1

2
|eij × eik| −Aijk∥2 (7)

where eij denotes the edge that connects the i-th and j-
th ED nodes. For each group of three edges that form an
triangle, the indicator is set to 1, i.e., Itri = 1, and Aijk is the
initial area of this triangle; otherwise Itri = 0. The second
term, LRot, is the quaternion normalization term adopted
from SuPer to ensure the quaternions hold ∥q∥2 = 1:

LRot =
∑
k

∥1− qT
k qk∥2 . (8)

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

The proposed semantic-aware surgical perception frame-
work was deployed on the da Vinci Research Kit (dVRK)
[42], [43] for evaluation (see Figure 3). We overlaid a piece
of chicken meat across a piece of beef. The green pins
attached on the tissue were used to collect ground truth for
evaluation (Section IV-B). The beef was pushed up-and-down
manually from below, and the dVRK was used to control
a surgical robotic arm to grasp and tug the chicken tissue.
4 trials were conducted, each consisting of 150 rectified
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Fig. 3. Experimental setup with the dVRK system.

640×480 frames at 30 fps, named Lab 1, 2, 3, and 4 in
the following sections.

B. Metrics and Ground Truth

For quantitatively evaluation, we attached roughly 60
green pins onto the tissue surface (see Figure 3), and ex-
tracted their trajectories in the image plane throughout each
trial by finding green region in the Hue-Saturation-Value
(HSV) color space. Because the videos were captured at
different distances to the scene in the 4 trials, the number of
green pins that appear in the videos ranges from 30 to 60. The
tracked surfels were then projected to the image plane for
calculating the reprojection errors, i.e., the distances between
the surfel reprojections and their corresponding ground truth.

C. Implementation Details

1) Depth Estimation: Monodepth2 is pre-trained with a
larger surgical dataset, the Hamlyn dataset [44], and then
finetuned with our data. Since the generalizability of ex-
isting deep depth estimation models including Monodepth2
is limited when applied to our data, which we believe is
because 1) the domain gap between the Hamlyn dataset
and our data is not ignorable and we do not have sufficient
frames for finetuning, and 2) the distances from the scene
to the camera vary a lot between different trials. Improving
depth estimation is not our focus here, so we finetune the
model without a train-test split. For both pre-training and
finetuning, Monodepth2 is trained for 20 epochs using the
Adam optimizer [45], with a batch size of 16, a learning rate
of 10−4 for the first 15 epochs and 10−5 for the remainder.

2) Semantic Segmentation: DeepLabv3+ [34] is trained
for 50 epochs using Adam optimizer, with a batch size of
16 and an initial learning rate of 10−4 which step decays by
0.1 for every 16 epochs. The models are trained under a K-
fold cross-validation setup with K = 4. At each split, three
trials were used to train the model, which was then directly
applied to the remaining trial for evaluating Semantic-SuPer.

3) Deformable Tracking: The surfels are initialized and
added in the same manner as SuPer [11]. To initialize the ED
graph, since the depths vary a lot between trials, we choose
the step size for each trial by ensuring the average edge
length of the graph is around 5mm. The hyperparameters for
the cost functions are λm = 10, λs = 1, and λr = 10.



TABLE I
REPROJECTION ERROR COMPARISON ON OUR DATASET.

Method Data
Lab1 Lab2 Lab3 Lab4

DefSLAM [22] 16.5(12.5), 14.5(11.3) 14.5(13.2), 15.6(13.8) 12.8(8.8), 13.0(8.5) 7.0(5.2), 7.3(5.4)
SD-DefSLAM [10] 8.5(8.5), 5.2(4.6) 8.0(9.4), 10.3(12.0) 8.4(9.1), 7.1(7.3) 3.8(4.0), 3.1(3.6)
SuPer [11] 10.8(8.8), 8.6(7.0) 10.8(10.1), 10.2(9.1) 8.1(6.7), 7.2(5.9) 4.8(4.3), 4.1(3.2)
NoSoftLabel-Semantic-SuPer 12.7(9.5), 9.1(7.4) 10.8(9.7),10.4(9.6) 8.9(7.3),7.3(6.0) 7.1(8.0),13.2(17.6)
Semantic-SuPer 7.5(6.1), 6.7(5.7) 8.6(7.6), 9.2(7.8) 6.0(4.9), 5.9(4.8) 4.3(3.8), 4.3(3.4)
* From left to right, the two metrics of each data are the reprojection errors averaged over all points and over points near
object boundaries, respectively. The errors are formatted as ‘mean(standard deviation)’. The best result in each row is in bold.

(a) DefSLAM (b) SD-DefSLAM (c) SuPer (d) Ours
Fig. 4. Comparison of the tracked point cloud with SOTA methods. The tissue grasping point is in the red rectangle.

TABLE II
INFLUENCE OF SEGMENTATION QUALITY ON SEMANTIC-SUPER.

Data Segmentation Method
DeepLabV3+ UNet UNet++

Lab1
HD(pixel) 124.6 182.7 205.3

F1(%) 96.3 96.6 96.9
Reproj. Err. 7.5(6.1), 6.7(5.7) 7.3(6.0), 7.2(5.9) 7.3(5.9), 7.4(5.9)

Lab2
HD(pixel) 155.6 164.9 181.9

F1(%) 97.2 97.3 97.6
Reproj. Err. 8.6(7.6), 9.2(7.8) 11.3(10.9), 12.4(11.5) 9.0(8.1), 8.5(7.4)

Lab3
HD(pixel) 224 369.6 313.3

F1(%) 97.5 97.7 98.1
Reproj. Err. 6.0(4.9), 5.9(4.8) 6.2(5.2), 5.7(4.8) 6.0(5.0), 5.5(4.6)

Lab4
HD(pixel) 107.3 156.4 175

F1(%) 96.1 96.8 96.7
Reproj. Err. 4.3(3.8), 4.3(3.4) 4.3(3.8), 3.7(2.9) 4.6(3.9), 4.1(3.1)

Refer to Table I for notes on the reprojection errors.

D. Results

As shown in Table I, we compare Semantic-SuPer against
two baselines: 1) SuPer [11], and 2) NoSoftLabel-Semantic-
SuPer that does not consider the semantic confidence score,
only connects surfels and ED nodes that belong to the
same class, and uses naive ICP metric calculated from
pairs of surfels from the same class. We also evaluate the
performance of SOTA deforming surgical scene tracking and
reconstruction algorithms DefSLAM [22] and SD-DefSLAM
[10]. DefSLAM and SD-DefSLAM track the scene based
on relatively sparse feature matching and may not track the
labeled points, so we estimated the flow of a certain labeled
point by averaging the flows of its 3 nearest neighbors.

Table I shows that Semantic-SuPer outperforms the base-
lines on Lab 1-3. Lab 4 has the furthest distance between the
camera and the scene so it presents minimum deformation,
causing a minor performance difference between Semantic-
SuPer and SuPer on it. Moreover, our framework outperforms
DefSLAM, while achieving either comparable or better per-
formance than SD-DefSLAM. DefSLAM and SD-DefSLAM
use matching algorithms based on sparse image features
so they could achieve low reprojection errors by selecting
more robust features. Yet, because the data was collected
by a stationary camera, these two algorithms are unable to
reconstruct the 3D surfaces well, while our approach uses
monocular depth estimation techniques and thus can provide
more accurate and dense tracking, as shown in Figure 4.

Moreover, a comparison of the influence of different seg-

mentation algorithms on Semantic-SuPer is shown in Table
II. We measure the quality of the predicted segmentation
maps using Hausdorff distance (HD), which indicates the
largest segmentation error, and F1 score [46]. Table II shows
a better performance is associated with a better segmentation,
i.e., lower HD or higher F1 score. Also, we find that it is
more likely to observe bad trackings after a small region
within a larger semantic area is incorrectly segmented as
another class, which could be addressed by postprocessing
the segmentation map using methods such as Conditional
Random Fields (CRFs) [47].

V. DISCUSSION

Table I demonstrates the benefits of including semantics
for tissue tracking with morphing loss. Further, the compar-
ison between Semantic-SuPer and NoSoftLabel-Semantic-
SuPer shows the benefits of considering the certainty of
segmentation. NoSoftLabel-Semantic-SuPer achieves worse
performance, because without using the soft semantic labels,
the incorrect segmentations assign surfels to ED nodes
that belong to other classes, and the estimations of the
ED node transformations will be affected more by wrong
associations between surfels belonging to different classes.
Thus, adopting better uncertainty estimation methods for
the semantics [48], [49], [50], as well as leveraging multi-
task learning-based cross-task knowledge [51] to estimate
uncertainty could lead to better tracking performance.

VI. CONCLUSIONS

We present a novel surgical perception framework
Semantic-SuPer that achieves better surgical scene 3D recon-
struction and tracking by integrating semantic information,
which has not been well-explored in prior works. In the
future, we will deploy our framework on endoscopic videos
captured by moving cameras. We will also investigate multi-
task learning to leverage useful information among depth,
normal estimation, and semantic segmentation to improve
these tasks, whose performance still limits our framework.
Furthermore, we plan to extract cross-modality knowledge
among these input data to achieve better uncertainty estima-
tion for more robust tracking.
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