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Abstract— From the beginnings of human evolution, dex-
terous manipulation skills have been crucial in our every-
day lives. Our hands, combined with our cognitive system,
give us vast abilities to interact with our surroundings. We
strive to give robots the same abilities to empower them as
helpful companions that can alleviate our everyday work.
Dexterous manipulation is a problem which classical model-
based methods have been unable to conquer. We propose
an end-to-end learning-based approach leveraging transformer
neural networks that learn from human examples obtained
by teleoperating the robot. Using the Action Chunking with
Transformers framework (ACT), our approach uses a highly
integrated learning pipeline that predicts chunks of robot
actions based on visual information and the current robot
state. We demonstrate successful policy deployments for a
simple pick-and-place scenario in real-world experiments using
a biomimetic, tendon-driven robotic hand mounted on a robotic
arm, using 130 episodes of expert demonstrations collected
on the robotic system. These promising first results show the
potential of behavior cloning for learning dexterous human-
like manipulation as a highly-integrated end-to-end approach
for both perception and control. Building up on such learning-
based frameworks, we can finally take a step towards the
long elusive goal of bringing manipulation skills to embodied
intelligence.

I. INTRODUCTION

Human hands have few counterparts in nature with a
similarly powerful combination of dexterity and versatility.
Development of dexterous manipulation in humanoids is
estimated to have emerged as early as 2 million years
ago [1]. Human hands have been a subject of intensive
study and have been a fascination particularly for the field
of humanoid robotics. The first human-like robotic hands
(Belgrade hands) date back to the 1960s. However, with
increased progress in industrial automation, very simple
end-effectors became a favoured alternative over dexterous
hand designs. Most robots today are deployed in factory
floors, where they operate under very controlled conditions,
performing specific repetitive tasks.

We can largely attribute this development to the lack of
one key element: intelligence. For human-level manipulation,
much more is needed than just the hand itself - which is, ul-
timately, not much more than an outstanding biological end-
effector. Instead, what makes dexterous manipulation such a
difficult problem lies in the cognitive area. Manipulation is
a task that requires tight coordination of nearly all human
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Fig. 1. A successful grasp of a plush toy. The robot is controlled by an
ACT (Action Chunking with Transformers) [7] model, which predicts future
robot states based on visual input from 2 RGB cameras and the current robot
state.

senses. Particularly, visual information is of high importance
for humans to find objects with their hands.

Giving such cognitive skills to robots has been a challeng-
ing task that has only begun to be solved with the advent
of machine learning. The first learning-based approaches
enabled manipulation through visual servoing. The main
idea of visual servoing is to use either geometry-based or
learning-based methods to predict grasping poses for the
manipulator based on some visual input [2], [3], [4], [5],
[6]. While visual servoing approaches have been shown
to work well for simple pick-and-place tasks, their deeper
understanding of the world is inherently limited by their
ability to only learn grasps, while most other control and
planning tasks (for example, what to do with the grasped
object) are still being done by relatively classical methods
that require explicit programming.

Let us consider the future use case of household assistant
robots. Such robots would be employed in a vast amount
of scenarios doing a wide variety of tasks. It is infeasible
to manually plan for every occasion with classical planning
tools. This naturally introduces the idea that instead of just
learning grasps, we learn behaviors. Instead of predicting a
single grasping state with a learned model and leaving the
rest to classical predefined planning mechanisms, behavior
cloning models predict sequences of robot states to success-
fully complete the task the model was trained on [8], [9],
[10], [11], [12], [13], [14], [7]. The key advantage compared
to previous visual servoing methods is that with behavior
cloning, we can give robots a deeper understanding of their
tasks and are able to replace classical task-level planners.

We introduce HiFaive: Learning Human-inspired dexter-
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Fig. 2. Visualization of the keyvectors for an Allegro hand shown by
Sivakumar et al. [19]. The keyvectors connect the wrist to all fingertips
and all fingertips to each other. For the Faive hand, we can utilize all 15
keyvectors from the human hand for full retargeting.

ous manipulation with the Faive Robotic Hand. The Faive
hand was first introduced by Toshimitsu et al. [15], to which
we refer for more details on the hand itself. This work
presents a full view on deploying a behavior cloning frame-
work on a robot setup, going from system architecture and
teleoperation for data collection to training and deploying
behavior cloning policies (as shown in Figure 1). Partic-
ularly, using a conditional variational autoencoder trans-
former architecture (ACT) introduced by Zhao et al. [7], we
show promising results for manipulating objects with our
biomimetic, five-fingered robotic hand (the Faive hand) on a
robotic arm.

II. TELEOPERATION AND DATA COLLECTION

Our main source of training data are expert teleoperations
conducted with the robot. An episode of training data con-
sists of the full successful execution of a task where the robot
is controlled by a human operator. Biomimetic robotic hands
such as ours require sophisticated methods for controlling
them. Our system, in total, has 17 controllable degrees of
freedom (11 for the hand + 6 for the arm). In this section,
we present our solution for real-time teleoperation at 20Hz,
which enables the operator to control both the Faive hand
and the robotic arm it is mounted on with high precision
while being able to perform a wide variety of highly complex
movements.

A. Optimization-based hand retargeting

The Faive hand has 16 degrees of freedom which can be
controlled in its joint space by 11 joint angles. An intuitive
way of controlling robotic hands is with our own human
hands through the use of hand motion capture. For hand
motion capture, we use FrankMocap [16] or the DepthAI
[17] hand tracker for the OAK-D camera to generate hand
state estimates (in MANO [18] format) in the form of 21 3D
locations of the hand joints. Having captured the human hand
state, we need to map from the human hand state to the robot
hand state. To map from human hand state θhuman ∈ R21×3

to robot hand state θrobot ∈ R11, we use optimization-based
retargeting using keyvectors similar to Sivakumar et al. [19].

We define keyvectors Khuman
i ,Krobot

i for human and
robot hand as vectors from each fingertip to all other fin-
gertips and from the palm to all fingertips (Figure 2). Since

both hands have five fingers, this amounts to 15 keyvectors
that capture the relative positions of the fingers with respect
to each other and the palm. Then, we implicitly define the
map

f : θhuman 7→ θrobot

through an energy function such that

θrobot = argminθrobot

15∑
i=0

∣∣∣∣Khuman
i − siK

robot
i

∣∣∣∣2
2

where both the human and robot keyvectors are constructed
with the current respective hand states and si are scaling
factors to match the length of the keyvectors.

We can solve for θrobot by numerical optimization using
gradient-descent-like algorithms. We qualitatively found that
using RMSprop [20] with a high stepsize LR = 2.5 for two
iterations yielded the best results for precise real-time control
at 20Hz.

B. Arm control

For controlling the 6D pose of the end-effector of our
Franka Emika Panda robotic arm (position and rotation),
we make use of two different methods. One is based upon
hand pose estimation by solving the PnP problem with
the estimated 3D hand joints and their reprojected pixel
coordinates in the image space (we use an OpenCV [21]
solver with RANSAC). The alternative option is based upon
using a SpaceMouse, a digital input device for single-handed
operation that allows controlling 6 degrees of freedom.

Both of these methods have their advantages: controlling
the robot pose with your own human hand pose is intu-
itive and allows for an easy entrypoint for untrained users.
However, it lacks the very high precision of joystick-based
controllers such as the SpaceMouse. In contrast, using a
SpaceMouse limits users to more experienced operators, but
enables much higher precision, particularly for controlling
the rotation of the end-effector.

With both methods, we send twists to the high-level
arm controller while low-level control relies on Ruckig [22]
trajectory generation. To collect our dataset for training, we
relied entirely on SpaceMouse operation.

III. SYSTEM ARCHITECTURE

Our system architecture leverages ROS Noetic [23] as
middleware to give us the needed flexibility in operating
modes (human teleoperation, replaying recordings, deploying
learned policies). Furthermore, ROS makes data collection
significantly easier through its rosbag interface. For robot
perception, we use two statically mounted cameras: one
OAK-D Pro for a top view and one ZED 2i camera for a front
view. We only use the RGB information from both cameras.
Another OAK-D Pro is used for hand motion capture of a
human operator. The architecture is shown in Figure 3.

For collecting data, we use the rosbag interface to tap
into ROS message streams. Then, the raw data is converted
to compressed HDF5 files for easy use for training behavior
cloning models. We collect a 17-dimensional robot state (11
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Fig. 3. System architecture for either real-time teleoperation at 20Hz,
replaying recorded data or deploying learned policies. To communicate in
between processes, ROS is used with simple publisher-subscriber connec-
tions. For controlling the arm end-effector, either the human hand pose
estimation or the SpaceMouse can be used.

Fig. 4. View of the robot workspace. Two cameras are mounted on arms
to enable visual perception. There is an ArUco marker [24] placed on the
table to verify a constant position of the cameras.

hand joint states + 6 arm pose dimensions) as well as RGB
images from front and top views.

IV. BEHAVIOR CLONING

Most recently, there has been a strong research interest
in behavior cloning for robotic manipulation, resulting in
a variety of different ideas for model architectures. Most
models share the fact that they heavily rely on transformer
networks [25], which have proven themselves to be highly
capable for sequence-to-sequence prediction tasks such as
predicting future robot states. In the scope of this work,
we adapt the ACT (Action Chunking with Transformers,
Figure 5) model architecture. To the best of our knowledge,
we are the first to adapt this framework for a dexterous
robotic hand.

The main differentiating feature of ACT is that instead of
only predicting single robot states as most other behavior
cloning frameworks do, it predicts chunks of k actions.
In closed loop operation, after each model query, temporal
ensembling is employed to combine the current k predictions
with the k − 1 overlapping state predictions from the last
timestep.

V. RESULTS

In the following, we present the results achieved with the
previously described architecture. Within the scope of this
work, it is our aim to show a system-level approach for
enabling behavior cloning research, whereas we reserve a
stronger focus on the behavior cloning architectures used
(e.g. ACT) for future research.

Fig. 5. The ACT architecture as shown by Zhao et al. [7]. It uses a
conditional variational autoencoder with transformers to learn from multiple
camera inputs and the robot state to predict chunks of k future robot states.

A. Data collection and training

We collected data for two pick-and-place tasks with differ-
ent difficulty levels and trained two single-task models using
the collected data.

1) Plush toy pick-and-place: We collected 130 episodes
of expert teleoperations, picking the plush toy and placing
it in a plastic bowl. In this task, the robot’s initial pose was
randomized, however, the plush toy and the bowl remained
at an approximately constant position.

2) Rubik’s cube pick-and-place: We collected 214
episodes of expert teleoperations, picking the Rubik’s cube
and placing it in a plastic bowl. In this task, the robot’s initial
pose, the Rubik’s cube initial pose and the bowl position was
randomized, significantly increasing the difficulty compared
to the non-randomized task.

3) Training: For each task, we trained the ACT model
architecture using only the collected examples from that
task as opposed to using all training data as in multi-task
approaches. Model hyperparameters were mostly taken over
from the original ACT implementation (i.e. LR = 1 · 10−5,,
training for 8000 epochs, prediction chunk size of k = 100).
A full ablation study concerned with the adaption of ACT
on our robot setup remains for future work.

B. Manipulation Results

Deploying the model, we were able to observe successful
results for the first task (plush toy pick-and-place) as shown
in Figure 6. The model managed to grasp the target object
from different initial positions and successfully transport it
to the bowl. If the task was not completed successfully, the
typical failure mode was that the model attempted to grasp
the object, however, failed to successfully pick the object.
Throughout all attempts, the model consistently moved to-
wards the target object in grasping attempts.

For the second task with higher difficulty (Rubik’s cube
pick-and-place), despite the model showing some under-
standing of the task, results were largely unsuccessful. The
typical failure mode consisted of the model moving the
robot towards the target object, however, failing to grasp
it due to lacking precision and then retrying unsuccessful
grasping attempts. Depending on the initial position, the
model would also sometimes fail to move precisely towards
the target object. While the manipulation was not successful,
we can still see that to some degree, the model learned to



Fig. 6. A successful policy execution: the robot setup picks up the plush toy and places it into the bowl. The model can successfully fulfill this task from
different initial robot states.

correlate visual features with future actions. Likely, more
training examples are needed for successful manipulation,
given the increased complexity with completely randomized
initial, target object and goal states.

VI. CONCLUSION

In conclusion, in this work we have presented a highly
integrated, end-to-end approach for learning human-inspired
dexterous manipulation with a robotic hand. Presenting tele-
operation methods and our system architecture, we provide a
system-level overview of our robotic system and its operating
modes. We motivate our choice of learning framework and
show a successful working example of our entire pipeline,
integrating both perception and control into one learning-
based control unit. Finally, in real-world experiments, we
have demonstrated successful policy deployment for a sim-
ple pick-and-place task and show present data-constrained
limitations for more executing more complex tasks. We lay
out our future research directions with a stronger focus on
investigating current behavior cloning models and introduc-
ing modifications such as novel input modalities like force
sensors for training.
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